Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case

نویسندگان

  • Lorenzo Brasco
  • Erik Lindgren
  • LORENZO BRASCO
چکیده

We prove that for p ≥ 2 solutions of equations modeled by the fractional p−Laplacian improve their regularity on the scale of fractional Sobolev spaces. Moreover, under certain precise conditions, they are in W 1,p loc and their gradients are in a fractional Sobolev space as well. The relevant estimates are stable as the fractional order of differentiation s reaches 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev and Lipschitz regularity for local minimizers of widely degenerate anisotropic functionals

We prove higher differentiability of bounded local minimizers to some widely degenerate functionals, verifying superquadratic anisotropic growth conditions. In the two dimensional case, we prove that local minimizers to a model functional are locally Lipschitz continuous functions, without any restriction on the anisotropy.

متن کامل

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

Using finite element tools in proving shift theorems for elliptic boundary value problems

We consider the Laplace equation under mixed boundary conditions on a polygonal domain Ω. Regularity estimates in terms of Sobolev norms of fractional order for this type of problem are proved. The analysis is based on new interpolation results and multilevel representation of norms on the Sobolev spaces Hα(Ω). The Fourier transform and the construction of extension operators to Sobolev spaces ...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Rate of Convergence to Self-Similarity for Smoluchowski's Coagulation Equation with Constant Coefficients

We show that solutions to Smoluchowski’s equation with a constant coagulation kernel and an initial datum with some regularity and exponentially decaying tail converge exponentially fast to a selfsimilar profile. This convergence holds in a weighted Sobolev norm which implies the L2 convergence of derivatives up to a certain order k depending on the regularity of the initial condition. We prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017